DNA cyclization and looping in the wormlike limit: Normal modes and the validity of the harmonic approximation.
نویسندگان
چکیده
For much of the last three decades, Monte Carlo-simulation methods have been the standard approach for accurately calculating the cyclization probability, J, or J factor, for DNA models having sequence-dependent bends or inhomogeneous bending flexibility. Within the last 10 years approaches based on harmonic analysis of semi-flexible polymer models have been introduced, which offer much greater computational efficiency than Monte Carlo techniques. These methods consider the ensemble of molecular conformations in terms of harmonic fluctuations about a well-defined elastic-energy minimum. However, the harmonic approximation is only applicable for small systems, because the accessible conformation space of larger systems is increasingly dominated by anharmonic contributions. In the case of computed values of the J factor, deviations of the harmonic approximation from the exact value of J as a function of DNA length have not been characterized. Using a recent, numerically exact method that accounts for both anharmonic and harmonic contributions to J for wormlike chains of arbitrary size, we report here the apparent error that results from neglecting anharmonic behavior. For wormlike chains having contour lengths less than four times the persistence length, the error in J arising from the harmonic approximation is generally small, amounting to free energies less than the thermal energy, kB T. For larger systems, however, the deviations between harmonic and exact J values increase approximately linearly with size.
منابع مشابه
درهمتنیدگی سامانههای سهبخشی بوزونی فراتر از تقریب تک مد در چارچوب شتابدار
In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this p...
متن کاملA Generalized Theory of DNA Looping and Cyclization
We have developed a generalized semi-analytic approach for efficiently computing cyclization and looping J factors of DNA under arbitrary binding constraints. Many biological systems involving DNA-protein interactions impose precise boundary conditions on DNA, which necessitates a treatment beyond the Shimada-Yamakawa model for ring cyclization. Our model allows for DNA to be treated as a heter...
متن کاملKinetics of interior loop formation in semiflexible chains.
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of i...
متن کاملNormal mode theory and harmonic potential approximations
Normal mode analysis has become one of the standard techniques in the study of the dynamics of biological macromolecules. It is primarily used for identifying and characterizing the slowest motions in a macromolecular system, which are inaccessible by other methods. This text explains what normal mode analysis is and what one can do with it without going beyond its limit of validity. The focus ...
متن کاملLooping dynamics of linear DNA molecules and the effect of DNA curvature: a study by Brownian dynamics simulation.
A Brownian dynamics (BD) model described in the accompanying paper (Klenin, K., H. Merlitz, and J. Langowski. 1998. A Brownian dynamics program for the simulation of linear and circular DNA, and other wormlike chain polyelectrolytes. Biophys. J. 74:000-000) has been used for computing the end-to-end distance distribution function, the cyclization probability, and the cyclization kinetics of lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2015